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The goal of dynamic hashing is to design a function and a file structure
that allow the address space allocated to the file to be increased and reduced with-
out reorganizing the whole file. In this paper, we propose an incremental approach
to a dynamic hashing scheme in which the growth of a file occurs at a rate of
((n+1)/n) per full expansion, where #n is the number of pages of the file, as com-
pared to a rate of two in linear hashing. Like linear hashing, the proposed approach
requires no index; however, the proposed approach may or may not add one more
page, instead of always adding one more page in linear hashing, when a split
occurs. Therefore, the proposed approach can have much better storage utilization
than can linear hashing. To reduce the number of disk accesses for overflow
records, the proposed approach applies separators; therefore, the retrieval of any
record is guaranteed to be in at most two disk accesses. From our performance
analysis, the proposed approach can achieve nearly 95% storage utilization as com-
pared to 78% storage utilization by using linear hashing, which is also verified by
a simulation study. Moreover, the proposed approach can be generalized to have
the growth of a file at a rate of ((n+k — 1)/n), where k is an integer larger than 1.
As k is increased, the average number of overflow pages per home page is reduced,
resulting in a decrease of the average number of disk accesses for data retrieval.

Keywords: Access methods, dynamic storage allocation, file organization, file
system management, hashing.

1. INTRODUCTION

Hashing techniques are used in file systems to achieve good performance
in access time and address records by using an identifier called a primary key,
or simply key [18]. Hashing provides a direct access mechanism which offers no
index storage space requirement and no complex storage management scheme.
However, as the size of the file grows, collisions may occur (i.e., many keys map
to the same address) and may cause an overflow (i.e., there is no room in the
mapped address), resulting in serious performance degradation of insertion and
retrieval operations. Therefore, file reorganization is required in this case. In the
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process of file reorganization, an address space larger than the current one is
chosen, and all the records must be rehashed by using a new hashing function.
To overcome this difficulty, dynamic hashing is used.

The goal of dynamic hashing is to design a function and a file structure that
can adapt in response to large, unpredictable changes in the number and distribu-
tion of keys while maintaining fast retrieval time [2, 26]. That is, the address
space allocated to a file can be increased and reduced without reorganizing the
whole file. Over the past decade, many dynamic hashing schemes have been pro-
posed. These dynamic hashing schemes can be divided into two classes: one needs
an index, the other one does not need an index. Extendible hashing [1, 6, 16, 19,
21] and dynamic hashing {7, 25, 27] belong to the first class. Linear hashing [3,
4,5,8,9, 10, 12, 13, 15, 17, 20, 22, 23, 24] belongs to the second class.

Among these dynamic hashing schemes, linear hashing dispenses with the
use of an index at the cost of requiring overflow pages. The first linear hashing
scheme was proposed by Litwin [15]. In linear hashing, a file is expanded by
adding a new page at the end of the file when a split occurs and relocating a
number of records to the new page by using a new hashing function. The new
hashing function doubles the size of the address space created by the old hashing
function. Therefore, after a full expansion (defined in Section 2.1), the number
of pages is doubled. By having two hashing functions active at the same time,
a file can be expanded without reorganizing all the records. Based on Litwin’s
linear hashing, there are several variants of linear hashing, which try to improve
the performance of the basic algorithm. Those variants can be classified into the
following four types:

1. Load Distribution: These strategies try to increase the storage utilization
or make uniform the load distribution [8, 10, 13, 22]. Among these strate-
gies, linear hashing with partial expansions as first presented by Larson
[8, 10] is a generalization of Litwin’s linear hashing [15]. This method
splits a number of buddy pages together at one time, and the data records
in each of those buddy pages are redistributed into the related old page
and the new added page (called a partial expansion) to maintain more
uniform storage utilization through the file, which improves performance.
That is, the doubling of the file (i.e., a full expansion) is carried out by
a series of partial expansions. For example, when the number of buddy
pages equals 2, the first partial expansion increases the file size to 1.5 times
the original file size, and the second partial expansion doubles the file
size of the original one. In [22], Ramamohanarao has proposed another
way to perform partial expansions, in which data records in all of the
buddy pages are redistributed into those old pages and the new added
page. Larson also has presented another strategy to make uniform storage
utilization through the file by changing the expansion sequence [13]. For
example, instead of splitting pages from 0 to 5, the splitting sequence
can be (5, 2, 4, 1, 3, 0), assuming that there are six pages in the system.

2. Overflow Handling: These schemes handle overflow pages in different
ways to reduce the number of disk accesses, for example, with linked lists
[15], including overflow records in home pages [20], multiple overflow
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chains per home page [9], linear probing [12], separators [13] and recursive
linear hashing (23]. _

3. Physical Implementation: These strategies describe efficient ways to im-
plement linear hashing. That is, they show how to map a logical address
to a physical address such that the performance of data retrieval, data
insertion and file expansion can be improved, for example, by using quanta
of different sizes [15], a fixed-size table for quanta [23], and elastic buckets
(4, 17].

4. Ordinal Access: These schemes attempt to capture the hashed order in
consecutive storage areas so that the order preserving schemes should result
in performance improvement for range queries and sequential processing
(3, 4, 5, 24].

Since, in linear hashing, all the records on the overflow page will be re-
distributed between this page and a new added page at the end of the file, the
storage utilization of this page will suddenly drop to only half of the original
storage utilization. Moreover, this phenomenon will cause the performance in
access time and storage utilization to oscillate after an expansion. To increase
storage utilization and maintain stable storage utilization, in this paper, we propose
an incremental approach to dynamic hashing. Two incremental schemes are pre-
sented: the first one is called forward incremental hashing, and the second one
is called backward incremental hashing since the first one always splits pages
forwards, and the second one always splits pages backwards. Both of them require
no index and restrict the growth of a file at a rate of ((n+ 1)/n) per full expansion,
where 7 is the number of pages of the file, as compared to a rate of two in linear
hashing. These two incremental hashing schemes may or may not add one more
page, instead of always adding one more page in linear hashing, when a split
occurs; therefore, they can have better storage utilization than linear hashing. To
reduce the number of disk accesses for overflow records, the incremental hashing
applies separators [11], which make use of a small in-core table to direct the search
so that the records in the overflow pages can be retrieved in one disk access.
Therefore, the retrieval of any record in the proposed schemes is guaranteed to
be in at most two disk accesses.

From our performance analysis, the proposed approach can achieve nearly
959, storage utilization as compared to 78% storage utilization using linear hashing,
which result has also been verified by a simulation study. We also observe that
the proposed incremental hashing schemes can have even better storage utilization
than linear hashing, when the keys are not uniformly distributed. Moreover,
the proposed approach can be generalized to set the growth of a file at rate of
((n+k—1)/n), where k is an integer larger than 1. Ask is increased, the average
number of overflow pages per home page is reduced, resulting in a decrease in the
average number of disk accesses for data retrieval (while also decreases storage
utilization). From our simulation study, when k=3 (or 4), the proposed approach
can still have better storage utilization than linear hashing while also needing fewer
disk accesses for data retrieval than all the other cases of k.

The rest of the paper is organized as follows. Section 2 describes the basic
ideas of these two incremental hashing schemes. Section 3 gives formal descriptions
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of the proposed schemes. Section 4 presents the performance analysis for the
proposed schemes. Section 5 discusses the simulation results of the proposed
schemes, and compares them with linear hashing. Section 6 extends the incremental
approach to have the growth of a file set at a rate of (n+k—1)/n). Finally,
Section 7 contains a conclusion.

2. BASIC IDEAS

In this section, we describe the basic ideas of two incremental schemes:
forward incremental hashing and backward incremental hashing.

2.1 Forward Incremental Hashing

In a dynamic hashing scheme without using an index, the data records-are
stored in chains of pages linked together [26]. A chain splif occurs under certain
conditions, for example, whenever the number of records exceeds the upper bound
of a load control L. Given a key, this scheme addresses records by using a series
of split functions, hy, hy, ..., h, In forward incremental hashing, the split func-
tions are defined as follows.

Let each key be mapped into a string of binary bits first, i.e., H(key)=
(bg_15 ---» by, b=c. Let hy(c)=0 be the function to load the file initially. The
rest of the split functions, h;, h,, ..., h,, are defined as follows:

for any record with H(key)=c:

hy(c) =0;
h;,(c)=hfc)+ b, for i=0,
where b; is the value of the ith bit of ¢

that is, h;, (c)=E_, b, and O0<h,,,(c)<i+1.

Let a split pointer sp point to the next page to be split and, initially, split
pointer sp points to page 0. A full expansion occurs when a split occurs at a page
next to which is a new added page [15]. A level is defined as the number of full
expansions which have occurred so far. For each level d, h, or h,,, is used to
locate a page depending on whether h,(c)=sp or not, and there are at most d+1)
pages in level d. On each level d, the pages are split in order from page O to the
maximum number of pages on that level. After all the pages in the current level
d have been split, i.e., after a full expansion, the value of level d is increased by
I, and the splitting process starts again from page 0 (i.e., sp is reset to 0).

Consider an example in which each home page can contain three records.
Let L, the load control, be 3. Let H(key) be the binary number representation
of the key. Initially, data records with H(key)=‘0001"’, <0010, “0011”’, are
inserted into page 0 by h,, as shown in Fig. 1—(a). When a data record with
H(key) = ‘0100’ is inserted into home page 0, the number of records has ex-
ceeded L; therefore, a split occurs. Since h,(0001)=h,(0011)=b,=1 and h,(0010)=
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0 0 1
0001 0010 | 0001
0o1d . 0100 | 0011
sp=0 sp=0

d=0 d=1

a) | (®)

Fig. 1. An example of forward incremental hashing.

L1

[T

(a) (b)

Fig. 2. A splitting operation in forward incremental hashing.

1,(0100) =b,=0, data records with H(key) = “0001"’ and ““0011’’ are moved to the
newly added page 1, and data records with H(key) = 0010’ and ‘0100’ still stay
in page 0 as shown in Fig. 1—(b). After the split occurs, sp is increased by 1,
which exceeds the maximum index of pages in level 0, i.e., a full expansion occurs;
therefore, sp is reset to page 0, and the value of d is increased by 1.

In general, when an insertion causes a splitting and sp =k, the data records
in page k will be redistributed to page k or page (k+1), according to whether the
value of bit b, is 0 or 1, respectively, i.e., according to the value of h,, (c) as
shown in Fig. 2-(a). When a split occurs and sp=d, i.e., sp has pointed to the
maximum index of pages in level d, a new page (d+1) is added at the end of the
file, and the data records in page d are redistributed to page d or page (d+1), ac-
cording to whether the value of bit b,is 0 or 1, respectively, as shown in Fig. 2-(b).
(Note that forward incremental hashing always splits a page k into page k and
page (k+1); i.e., it splits forwards.)

2.2 Backward Incremental Hashing

The above definition of splitting functions has shown how forward incre-
mental hashing adds only one more page per full expansion. However, using these
hashing functions, the system may result in an uneven load distribution when
the keys of input data records are uniformly distributed, i.e., more data records
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Table 1. The variance of the load distribution in forward incremental hashing.

Level Page number (X) Mean Variance

d 0 1 2 3 4 5 6 7

1 1 1 1 0

2 1 2 1 1.3 0.2

3 1 3 3 1 2 1

4 1 4 6 4 1 3.2 3.8

5 1 5 10 10 5 1 5.3 13.6

6 1 6 15 20 15 6 1 9.1 48

7 1 7 21 35 35 21 7 1 16 173
Mean = L ;; Xi Variance = L ;; (Xi—Mean)2

d+1 = d+1 {=o

are distributed in those pages which are near the central part of the file. This
case can be explained as follows. Since the number of records stored in page k
is equal to the total number of 1’s in the binary representation of a key, there are
C¢ records in page k (0<k=<d) when the keys are uniformly distributed. There-
fore, the variance of the load distribution can show how the uneven load distribu-
tion occurs in forward incremental hashing, as shown in Table 1, where the value
shown in the intersection position of level d and page number X is the number
of records stored in that case. From Table 1, we observe that the variance of the
load distribution is nearly an exponential function of the level d. To make uniform
the load distribution, let’s consider backward incremental hashing, which is defined
as follows.

For any record with H(key)=c:

hO(C) = O’

_ h(c)-b; if h;,(c)=0
b (©)= i+1, otherwise

Consider the example shown in Fig. 3, where the size of a home page is 3,
the size of an overflow page is 1, and the load control is 3. Initially, data records
with H(key)=‘‘0001"", ‘°0010’’ and ‘“0011”’ are inserted into home page 0 by using
hy(c)=0, and sp=0 and d=0, as shown in Fig. 3-(a). After the data record with
H(key)= 0100’ is inserted, the number of inserted records exceeds the load
‘control. Therefore, data records in page 0 are split into page 0 and page 1 by
using h,, as shown in Fig. 3-(b). (Note that at this point, sp in level 0 also has
pointed to the maximum index of pages in level 0; therefore, the value of level d
should be increased by 1, and sp is reset to 0.)

Figure 3-(c) shows the system state after two more records with H(key)=
‘0101’ and ‘‘0110”’ inserted into page 1 and page 0 by using h,(0101)=1 and
h;(0110) =0, respectively. After a data record with H(key)= ¢‘0111°’ is inserted,
the number of inserted records exceeds the load control again; therefore, data
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0001 0010 0001 0010 | 0001
0010 0100} 0011
0011 0100} 0011 0110] o010t
sp=0 sp=0 sp=0
d=0 d=1 ‘ d=1
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0011] 0110 00t1] 0101} 0110
0101 0111} 1001] 1010
0111 1110
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d=1 d=2
(d) (e)

Fig. 3. An example of backward incremental hashing.

records in page 0 have to be redistributed to page 0 and page 2 by using the split
function h,,,=h,, and then sp is increased by 1 as shown in Figure 3-(d). After
three more records with H(key) = €“1001”’, “1010”* and ‘‘1110”” are inserted, a split
occurs again. Since sp=1, data records in page 1 have to be redistributed to page
1 and page 0 by using the split function h,,,=h,. After sp is increased by 1, sp
is greater than d (i.e., the maximum index of pages in current level d); therefore,
sp is reset to 0, and d is increased by 1, as shown in Fig. 3-(e).

In general, backward incremental hashing always splits a page k (k>0) into
page k and page (k—1); i.e., it splits backwards. Note that when k is equal to O,
it splits page 0 into page 0 and a new added page (d+ 1), where d is the maximum
index of pages in level d.

The load distribution for backward incremental hashing can also be described
in terms of the variance, as shown in Table 2. (Note that when we let X? be
the number of records in page i of level d when the keys are uniformly distri-
buted and X2=2, X?=1, X3=1, the value of X?is (X{'+X{)) when d>2
and 0<i<(d-1), and the value of X9 , is X%} and the value of X§ is X§~'
when d>2.) Compared with forward incremental hashing, backward incremental
hashing has much smaller variance of load distribution than does forward incre-
mental hashing, which shows that backward incremental hashing has more even
load distribution than forward incremental hashing when the keys are uniformly
~ distriubted.
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Table 2. The variance of the load distribution in backward incremental hashing.

Level Page number (X) Mean Variance

d 0 1 2 3 4 5 6 7

1 1 1 1 0

2 2 1 1 1.3 0.2

3 3 2 1 2 2 0.5

4 5 3 3 2 3 3.2 0.9

5 8 6 5 5 3 5 5.3 2.2

6 14 11 10 8 8 5 8 9.1 6.9

7 25 21 18 16 13 13 8§ 14 16 24.5
Mean =1—% Xi Variance =—1— ;; (Xi — Mean)?

d+1i=o d+1 i=o

3. THE ALGORITHMS

In this section, we give a formal description of address computation algorithms
for forward incremental hashing and backward incremental hashing, respectively.
We also describe retrieval, insertion and file split algorithms used in both schemes.
In these algorithms, the following variables are used globally: (1) b: the size of
a home page in terms of the number of records; (2) w: the size of an overflow
page in terms of the number of records; (3) sp: the split pointer and the initial
value=0; (4) d: the level, i.e., the number of finished full expansions and the
initial value=0.

3.1 Address Computation for Forward Incremental Hashing

Let function H(key) map a key into random binary bit patterns of length q,
for q sufficiently large. Let function b,(c) return the value of the ith bit of the
binary patterns, which is denoted by ¢ (=H(key)). To compute the final home page

number after d full expansions, the function home__address is defined as follows:

function home__address(key) : integer;

var ¢ : integer; /* = H(key) */
i: integer; /* an index */
address : integer;
begin
¢ = H(key);
address = O; /* i.e., hyc) */

fori = 0to(d—1) do
address = address+ b,(c);
if address < sp then address = address + b,(c);
return (address);
end;
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In this function, initially, all the data records are mapped into page O by
hy(c)=0 and, hence, address=0. Then, the for-loop statement traces the home
page number (denoted as address) through d full expansions. Because the result
of the above for-loop statement is equal to the summation of the binary bit
patterns from b, to b,_,, we actually need not trace the loop for d times, and
we only take a sum operation. For the unfinished (d+ 1)th full expansion, a page
may have been split or not. Depending on whether or not address<sp, the final
home page number is determined. If address=sp, the page determined by the
key after d full expansions has not yet been split; therefore, the page number is
the final home page number. Otherwise, address must be added with the value
of bit b, to determine the final home page number.

3.2 Address Computation for Backward Incremental Hashing

Based on the same definitions for function H(key) and b(c), the home page
computation function for backward incremental hashing is given as follows:

function home__address(key) : integer;
var ¢ : integer; /* = H(key) */
i : integer; /* an index */
address : integer;
begin
¢ = H(key);
address = 0; /¥ i.e., hylc) */
fori = 0to (d—1) do
begin
address = address —b,(c);
if address <0 then address = i+ 1;
end;
if address<sp then address = address—b,;
if address <0 then address = d+1;
return (address);
end;

Il

In this function, initially, all the data records are also mapped into page
0 by hy(c)=0 and, hence, address=0. Then, the for-loop statement traces the
page number through d full expansions according tc the hash function de-
fined in Section 2.2; i.e., it traces the ‘history’ of the record as the file goes
through d full expansions. The address after the for-loop statement represents
the home page number after the dth full expansion. As in forward incremental
hashing, we should compare address with sp to determine the final home page
number. In this address computation algorithm, the for-loop statement needs
O(d) to determine the home page number after d full expansions. To speed
up this computation, we have given another address computation algorithm,
which needs O(logd) in the worst case and may need only O(1) in the best case
{14].
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3.3 Overflow Handling and Retrieval

In {13], Larson applied separators [11] for home pages to linear hashing
to guarantee that any data record can be retrieved in one disk access, where over-
flow pages are eliminated and overflow recores are distributed among the home
pages. This method is based on hashing and makes use of a small in-core table,
for each home page if needed, to direct the search. To understand what a sepa-
rator is, let’s define a probe sequence first. Assume that all of the data records
are stored in an external file consisting of n pages, and that each of these n pages
has a capacity of b records. For each data record with key =K, its probe sequence,
pK)=(p,(K), p(K), ..., pK)), (n=1), defines the order in which the pages will
be checked when inserting or retrieving the records. For each data record with
key =K, its signature sequence, s(K)=(s,(K), s,(K), ..., s,(K)), is a k-bit integer.
When a data record with key=K probes page p{K), the signature s(K) is used,
and 1=<i=<n. Implementation of p(K) and s(K) has been discussed in detail in
{11]. Consider a home page j to which r, r>Db, records hash. In this case, at
least (r— b) records must be moved out to their next pages in their probe sequences,
respectively. Only at most b records are stored on their current signatures, and
records with low signatures are stored on the page whereas records with high sig-
natures are moved out. A signature value which uniquely separates the two groups
is called a separator and is stored in a separator table. The value stored is the
lowest signature occurring among those records which must be moved out. Since
in [13], overflow records are distributed among the home pages, the costs of file-
split, insertion and maintaining separators will be expensive. To avoid this dis-
advantage and efficiently search a data record stored in overflow pages, incremental
hashing also applies separators but only for overflow pages.

To apply separators to handle overflow pages in both of the proposed in-
cremental hashing schemes, we need the following modification. Assume that
for each home page, i, its overflow records are stored in an external file consisting
of m pages, and that each of those m pages has a capacity of w records. For each
overflow record of home page i with key=K, let its probe sequence be p,(K)=
0u(K), ppuX), ..., p;K)D=(1, 2, ..., m), (n=1). (Note that to increase storage
utilization, we probe overflow page j until overflow page (j—1) is full when a
data record is inserted.) For each overflow record of home page i with key=K,
let its signature sequence be s(K)=(s;(K), sx(X), ..., $;n(K)). When an overflow
record of home page i with key =K probes page p,(K), the signature s,(K) is used,
and 1 <j<m. By using separators and the above modification, any data record
can be found in at most two disk accesses. (Note that a separator table has two
entries: one is a separator value, and the other one is a pointer to an overflow
page. Moreover, to reduce the overhead used to store all the separator tables in
the main memory at the same time, in physical implementation, we can reserve
some space in each home page for the related separator table. When a home
page is read in, the related separator is stored into main memory at the same
time.) The following function current__address(key) is used to locate the actual
physical address (either in a home page or in one of its related overflow pages),
where separator;, 1<j<m, represents the separator for the jth overflow page of
home page i:
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function current__address(key) : pointer;

var i : integer; /* home page of the record */
j : integer; /* an index */
m : integer; ,

/* the number of overflow pages owned by home page i */
begin
i = home__address(key);
if data record is found in page i
then
return(physical__address(i));
/* function physical__address returns the
actual physical address of home page i */
else
begin
forj = 1tomdo
begin
if s,(K)<separator;!.value
then
begin
if data record is found in page
pointed by separator;!.pointer
then
return (separator;!.pointer)
else return (nil); :
end
end;
return (nil); /* nil denotes that the record is not found */
end;
end;

In this function, home page i is searched first, which is one disk access. If
the data record cannot be found in home page i, its overflow pages are tried by
using a separator. If the data record exists in those overflow pages, one more
disk access is needed; otherwise, 0/1 more disk access is needed. Therefore, at
most two disk accesses are needed.

3.4 Insertion and File Split

When a data record is inserted, its home page is searched first. If the size
of its home page has exceeded page size b, then one of its related overflow pages
is tried according to its probe sequences. In the case where insertion of the data
record causes relocations of some other records in the overflow page, related
separators may also have to be updated [11]. The informal description of pro-
cedure insert(key) is given as follows:

procedure insert(key);
var pageno : integer; /* home page of the record */
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begin
~ pageno = home__address(key);
if (the number of records on page pageno <b) then
insert the record into page pageno;
else
begin
if the current overflow pages are full then
append a new page at the end;
insert the record into one of the overflow
pages of page pageno by using separators;
end;
end;

In the main program used to implement incremental hashing, we use a global
counter to record the number of records newly inserted. That is, the split control
(by using the load control L) is not implemented inside the procedure insert(key) but
in the main program. When a split should occur, which can be detected by testing
the value of the global counter, the main program will call the following procedure
file__split. In this procedure, data records in page sp (including its overflow pages)
have to be redistributed to page sp or (sp+1) in forward incremental hashing (or
page sp or page (sp— 1) in backward incremental hashing), depending on whether
the value of b, is 0 or 1. If sp=d when a split occurs, data records in page d are
redistributed to page d or page (d+1) (or page d or page (d— 1) in backward in-
cremental hashing) by using h,,,. When a full expansion occurs, d is increased
by 1, and sp is reset to 0. The results of the above actions are equal to updating
sp (and d) first and then re-inserting (i.e., by calling procedure insert) those data
records which are in the page where the old sp points by using the new hashing
function h,,,. The informal description of procedure file__split is given as follows:

procedure file__ split();
var B : buffer;
begin
read home page sp and its overflow pages into buffer B;
set home page sp and its overflow pages to empty;
sp = sp+1;
if sp>d then
begin
sp = 0;
d = d+1;
end;
for all the records in buffer B do insert(key);
end;

4. PERFORMANCE ANALYSIS

In this section, we present the performance analysis of both incremental
hashing schemes under the split control of the load control L. In this performance
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analysis model, we assume that the keys for data records are distributed uniformly
and independently to each other, and that the page size is measured in terms of
the number of record slots. The size of a home page is denoted by b, and the
size of an overflow page is denoted by w. The overhead for updating separator
tables for home pages is ignored. We also assume that the number of overflow
pages for each home page is a minimum. In other words, if a home page has £,
k=0, overflow records, then there will be [k/w] overflow pages for this home
page. When the search cost is computed, all records are assumed to have the
same probability of retrieval.

Let s, be the number of pages of a file inijtially and N be the number of
data records inserted into the file. Given N, we are able to derive information
about the current state of the file, such as the number of used home pages, sp,
the average retrieval cost and the storage utilization, that is, analyze these pro-
perties of a file as a function of N. The various properties that we are interested
in are discussed below.

The number of splits performed is given by

ns(N) = 0, for 0=N=(s, * L) or
ns(N) = [(N—s, * L)/L], for N> (s, * L).

(Note that to reduce the number of splits, we assume that the first split is
delayed until the first s, pages are filled with s, * L records in this performance
analysis.) Since, in incremental hashing, the growth rate of a file is ((n+ 1)/n),
the number of home pages expanded (denoted by m) is given by

So+ (So+ D)+, + S+ (m—1))=ns(N)<sp+ (5, + 1) + ..., + (5o + m).

The first page will be added after sp scans over s, pages, the second page will
be added after sp scans over (s,+ 1) pages, and so on; therefore, the mth page is

added to the file after E:i:om_l i splits. Therefore, (((m + 2+s,— 1)*m)/2)<ns(N) and

m = |(V8xns(N)+ (2#5,— 1)>—2#s,+1)/2]. Then, the maximum index of home
pages for the file is s (=(s,+m—1)), and sp is (s(N) — (((m + 2#5, — 1) *m)/2)).

The load distributions (i.e., the number of records distributed into a certain
page) for home pages are different in these two proposed incremental hashing
schemes as mentioned in Section 2. Let P(sp, i, s) be the probability that a
data record will be hashed into home page i after s full expansions when the
split pointer points to page sp. In forward incremental hashing, the probability
P(sp, i, s) is (C5/ 2°) when sp is reset to 0 since, when sp is reset to 0, there are
already 2° data records inserted. Moreover, at this time, the number of records
stored in page i is equal to the total number of 1’s in the binary representation
of a key, i.e., there are C{ records in page i (0=<i=<s), when the keys are uniformly
distributed. Therefore, when sp=0, among those 2° data records, there are C;
data records in page i as shown in Table 1. During the (s+ I)th full expansion,
the probability P(sp, i, 5) needs to be modified to (G-, +C)/(2°+ EZ‘:OI %)), when
O<sp<s and i<sp. (Note that, since forward incremental hashing always split
forwards, the load distribution during the (s+ 1)th full expansion for home page i
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should be the one for home page / plus the one for home page (i—1) after s full
expansions.) When O0<sp=<s and i>sp, the probability P(sp, i, s) is (C/(2°+
Ejf;(} 2)), where the home page i has not been split yet. For example, for the
load distribution shown in Table 1, if we let s be 3 and sp be 2, then the prob-
ability P(2, 0, 3) is ((C*,+ C)/(2*+ C3+ C})) (=(1/12), for C*,=0), the probabili-
ty P2, 1, 3) is ((C3+C)/(22+C3+C)) (=(4/12)), the probability P2, 2, 3) is
(C3+CH/(2° + C3+ Cd) (=(6/12)) and the probability P2, 3, 3) is (C3)/(2*+ Cy+
CH) (=(1/12)).

For similar reasons in backward incremental hashing, after s full expansions
and sp =0, the probability P(0, i, s) for home page i (0<i<s) is (PO, i, s—1)+
PO, i+1, s—1))/2), and the probability P(0, s, s) for home page s is (PO, 0,
s—1)/2). During the (s+ 1)th full expansion, after a split occurs in home page
0 (i.e., sp=1), and all the data records of home page 0 have been redistributed
to home page 0 and a new added home page (i.e., page (s+ 1)), the probability
P, i, s) 0=<i<s) is (PO, i, s)/(1+ P, 0, 5))) and the probability P(1, s+1, )
for the new added home page (s+1) is (P(0, 0, s)/(1+P(0, 0, 5))). Moreover,
when 1<sp=s, the probability P(sp, i, s) of the page left of (sp—1) (i.e., 0=i<
(sp—1)) is (PO, i, $)+ P, i+1, $))/(1 + L7 PQ, k, s))), while the probability
P(sp, i, s) of the page right of (sp—1), including page (sp—1), (i.e., (sp—1)=si=ss)
is (PO, i, $)/(1+ X7, PO, k, s))), and the probability P(sp, s+ 1, s) for the new
added home page (s+1) is (P(0, 0, s)/(1+X72) P, k, s))).

From the load distribution analysis in both proposed schemes, we observe
that - during the (s+ 1)th full expansion, the maximum used index (n) of home
pages is s in forward incremental hashing while in backward incremental hashing,
nis (s+1) when O<sp<s and » is s when sp=0, Let W(¢) be a function to denote
the number of overflow pages of a home page with ¢ data records inserted and
let it be defined as follows:

wt) = 0, for0=t<bD or
w) = j, for b+ (—-D*w+1D<t=<(b+]*w).

Let Bin(z; N, P) denote the binomial distribution, i.e., Bin(¢; N, P) = (CN* P’
(1-P)"""). The probability that home page i (0<i<n) contains ¢ data records
is Bin(z; N, P(sp, i, s)). The expected number of overflow pages for home page
i is obtained as

OP(N) = L, (W(t)*Bin(5; N, P(sp, i, 5))).

Then, the average number of overflow pages for the file after inserting N
data records is given by

OP(N) = (X[, OP(N))/(n+1),
and the storage utilization can be obtained as follows:

UTIN) = N/((n+ 1)= (b +w*OPN))).
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By using separators for handling overflow records, the expected cost of an
unsuccessful search for home page i (0<i=<n) in terms of the number of disk
accesses is

Us; = 1, for OP, = 0 or
Us, = 2, for OP;> 0.

Then, the average number of disk accesses for an unsuccessful search is
given by

US(N) = L7_o(US(N)*P(sp, i, 5)).
For the successful search, we first consider the expected number of disk
accesses for retrieving all the data records in home page i (0=<i<n) plus its over-

flow pages, which can be obtained by

RAMN) = (Z_o(*Bin(t; N, P(sp, i, $)))+Lil,. (¢ + (1~ b))
Bin(t; N, P(sp, i, 5)))). |

Then, the average number of disk accesses for a successful search can be
calculated by

SS(N) = (Z,RA,N))/N.

Table 3 shows the results derived from the above formulas, where s,=1,
N=1000, b=10, 20, 40, and 80, w=0.5+*b and L=0.8«b, L=b and L=1.2%b

Table 3. Analysis results.

Parameters Forward Backward

b w L SsS us uti s us uti
10 5 8 1.893 2.0 0.931 1.830 2.0 0.967
10 5 10 1.908 2.0 0.939 1.850 2.0 0.970
10 5 12 1.907 2.0 0.949 1.860 2.0 0.972
20 10 16 1.848 2.0 0.909 1.760 2.0 0.948
20 10 20 1.856 2.0 0.922 1.780 2.0 0.952
20 10 24 1.861 2.0 0.936 1.800 2.0 0.956
40 20 32 1.756 2.0 0.889 1.641 2.0 0.921
40 20 40 1.783 2.0 0.901 1.680 2.0 0.929
40 20 48 1.753 1.969 0.946 1.720 2.0 0.937
80 40 64 1.619 2.0 0.852 1.520 2.0 0.889
80 40 80 1.685 2.0 0.874 1.522 2.0 0.887
80 40 96 1.642 2.0 0.908 1.600 2.0 0.914

b: the size of a home page ss: successful search

w: the size of an overflow page us: unsuccessful search

L: load control uti: storage utilization




510 YE-IN CHANG AND CHIEN-I LEE

in forward incremental hashing and backward incremental hashing, respectively.
From this table, we observe that the storage utilization can be up to nearly 95%
in forward incremental hashing and 97% in backward incremental hashing.

5. SIMULATION RESULTS

In this section, we show the simulation results of both incremental hashing
schemes by using the load control strategy, and we compare them with linear
hashing [15]. Moreover, we compare them with the results of performance analysis
as presented in Section 4.

* In this simulation study, we assume that N input data records are uniformly
distributed. The environment control variables are the size of a home page (b)
and the size of an overflow page (w) and a load control (L) which controls when
a split should occur. In this simulation, the storage utilization and the average
number of disk accesses for successful and unsuccessful searches are the main
performance measures considered. Since the overflow pages are handled by
separators, at most two disk accesses are required for a successful or an unsuc-
cessful search.

Table 4 shows the simulation results of forward incremental hashing and
backward incremental hashing, where N=1000, w=0.5*b and L=0.8%b, L=b
and L=1.2xb, respectively. Compared with the analysis results shown in Table 3,
the simulation results shown in Table 4 are very close to those shown in Table 3.

Figures 4-(a), (b), (¢) show the relationship between the storage utilization
and b (i.e., the size of a home page) in forward incremental hashing, backward
incremental hashing and linear hashing, where N=1000, W=0.5%b, and L=0.8 D,

Table 4. Simulation results.

Parameters Forward Backward

b W L ss us uti ss us uti’
10 5 8 1.914 1.958 0.921 1.890 1.847 0.917
10 5 10 1.914 1.958 0.939 1.890 1.847 0.935
10 5 12 1.914 1.958 0.948 1.890 1.847 0.943
20 10 16 1.844 1.989 0.917 1.780 1.847 0.925
20 10 20 1.855 1.969 0.917 1.780 2.0 0.943
20 10 24 1.857 1.975 0.934 1.800 2.0 0.952
40 20 32 1.757 1.955 0.893 1.640 2.0 0.926
40 20 40 1.777 1.976 0.901 1.680 2.0 0.926
40 20 48 1.784 1.984 0.943 1.720 2.0 0.944
80 40 64 1.617 1.938 0.893 1.519 2.0 0.926
80 40 80 1.666 1.906 0.893 1.520 2.0 0.893
80 40 96 1.635 1.874 0.893 1.600 2.0 0.926

b: the size of a home page ss: successful search

w: the size of an overflow page us: unsuccessful search

L: load control : uti: storage utilization
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Fig. 4. The relationship between the storage utilization and b: (a) L=0.8%b; (b) L=Db;
(¢) L=1.2%b.

b, and 1.2=%b, respectively. In all of these three cases, whether L<b, L=b or
L > b, both versions of incremental hashing have higher storage utilization than
does linear hashing. When b=40, w=20, and L =48, as shown in Figure 4-(c),
forward incremental hashing can achieve 94% storage utilization, as compared to
78% storage utilization for linear hashing under the same conditions. Moreover,
backward incremental hashing may achieve higher storage utilization than forward
incremental hashing. This is because that the latter would let data records be
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distributed in those pages which are near the central part of the file, as explained
in Section 2, resulting in more overflow pages.

Figures 5-(a), (b) show the relationship between the storage utilization and
the size of an overflow page with three different L in these two incremental hashing
schemes, where b=10. From these two figures, we observe that in both schemes,
the larger the load control is, the higher the storage utilization is, when the size
of an overflow page is fixed. This is because the larger the load control is, the
lower is the frequency of occurrence of a split, which results in a decrease in the
number of needed home pages (i.e., an increase in the storage utilization). More-
over, as the size of an overflow page is increased, the storage utilization is de-
creased. This is because the larger the size of an overflow page is, the more empty
slots the overflow pages have, which results in a decrease in storage utilization.

Figures 6-(a), (b) show the relationship between the average insertion cost
in terms of the number of disk accesses and the size of a home page (b) with
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Fig. 5. The relationship between the storage utilization and the size of an overflow page:
(a) forward incremental hashing, (b) backward incremental hashing.
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Fig. 6. The relationship between the average insertion cost and the size of a home page:
(a) forward incremental hashing, (b) backward incremental hashing.
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different L, where the size of an overflow page is 0.5+b and N=1000 in both
schemes. From these two figures, we observe that as the value of b is increased,
the average insertion cost is decreased. This is because that the larger the value
of b is, the more data records can be put in a home page, instead of in an overflow
page, which results in a decrease in the insertion cost. (Note that the insertion
cost includes the number of disk accesses to add a data record into a certain page
and the number of disk accesses to relocate data records when this insertion causes
a split.) Obviously, since storage utilization and insertion cost are always a trade-
off, both proposed schemes need a higher insertion cost than does linear hashing.
However, in the next section, we will extend the proposed schemes such that a
lower insertion cost than that for linear hashing is achievable at the cost of a
decrease in storage utilization.

The above simulation results are based on the assumption that the input
data records are uniformly distributed and show how incremental hashing is better
than linear hashing. Now, let’s examine some more interesting results when the
input data records are not uniformly distributed. Consider a special case in which
almost all of the data records are hashed into the same home page. Assume
that k splits occur in linear hashing and that the file contains one page initially;
in this case, there are k more pages are added. Under the same number of splits,
there are s more pages added in incremental hashing, where (1+2+...+8)=<k<
(142+...+(s+1)), as explained in Section 4. Therefore, (((s+ 1)#s)/2)<k and
s=|(V8xk+1—1)/2], i.e., after k splits occur, and about |(~/ 8+k+1—1)/2| pages
are added in incremental hashing as compared to k pages in linear hashing. When
L=b and w=1, the storage utilization is ((k+1)*b)/((|(V8xk+1-1)/ 2| *b)+
(k+b))) in incremental hashing as compared to (((k+ D#b)/((k+1)*b+k=*b)) in
linear hashing, where there are (k*b) overflow records. As k is increased, the
storage utilization approaches 1 in incremental hashing while it is about (1/2) in
linear hashing.

Figure 7 shows a comparison of the storage utilization between these two in-
cremental hashing schemes and linear hashing when the keys of input data records
are not uniformly distributed, where N=500, b=10, w=4, L=10 and the keys
of data records are multiplied by 2, 2% ..., 2° and 2'° to simulate the case in which

ot
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Fig. 7. The relationship between the storage utilization and the non-uniform key distribution.
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almost every record is hashed into the same page. (Note that in Fig. 7, the X-axis
has been replaced by the logarithmic function of x with base 2.)- In this case,
incremental hashing schemes can provide even better storage utilization than can
linear hashing as the multiplier is increased. When the multiplier is increased (i.e.,
more data records are hashed into the same home page), storage utilization in
linear hashing even drops below 50% while both incremental hashing schemes still
keep storage utilization above 85%.

6 EXTENSION

Both incremental hashing schemes defined in Section 2 restrict the growth
of a file at a rate ((n+ 1)/n) per full expansion, where » is the number of pages
of the file; i.e., only one new page is added to the file after a full expansion.
Under the split control by the load control L, (n+L) more data records are disitri-
buted into (#+ 1) home pages in incremental hashing, instead of (2+#) home pages
in linear hashing, which results in better storage utilization in incremental hashing
than in linear hashing as has been proved by both analysis and simulation results.
However, the high storage utilization implies that there may be many overflow pages
for each home page, resulting in a large number of disk accesses for data retrieval
and insertion operations. Therefore, we look for a compromise between high
storage utilization and fast data retrieval. In this section, we extend the proposed
approach to have a growth rate of ((n+k—1)/n) per full expansion (k=2); i.e.,
(k—1) more pages are added per full expansion, such that the number of disk
accesses for data retrieval and insertion operations can be reduced. We describe
the basic ideas, present address computation algorithms and discuss the simulation
results.

6.1 Basic Ideas and Formal Definitions

Let each key be mapped into a string of k__base digits, i.e., H(key)=c=
(Cqet1r Cym2s +-vs €15 Co) (0=c;<k and 0=i<gq). Let hy(c)=m, be the function to
load the file initially, where 0=<m,<(m—1) and m denotes the number of pages
of a file initially. The rest of the split functions, h,, h,, ..., h,, for extended for-
ward incremental hashing and extended backward incremental hashing are defined
as follows:

For any record with H,(key)=c:
(1) Extended forward incremental hashing:

holc) = my, where 0 < m, = (m—1)
h;, (c) = hfc)+c, fori = 0,
where c; is the value of the ith digit of ¢;

that is, h;, () =m,+X]_¢ c;, and 0<h,, () =my+ (i + 1)*(k—1).

(2) Extended backward incremental hashing:
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ho(c) = my, where 0 < my < (m—1)
h;,,(¢) = hfe)—cy, if hfc) = ¢ or
b, ©) = @+ D)xk—1D+(c)—c)+(m-1)+1, otherwise;

that is, 0<h,, ,(©)=(m—-D+(E+1)=x(k—-1).

In general, in extended forward incremental hashing, when an insertion causes
a split on page i (which is pointed to by sp and 0=i<(n—k)), where n is the
number of pages of the file after the dth full expansion, the data records in page
i will be redistributed among those k pages which are page i, (i+1), ..., (+k—2)
and (i +k — 1), according to the value of ¢, When a split occurs in page (n— k+1),
a new page 7 is added to the file and the data records on page (n—k+ 1) will be
redistributed among the current page and the next (k—1) pages, where page n
is newly added. Similarly, a split occurs in page i, where (n—k+2)=<i =(m-—1)
causing a new page, (i+k—1), to be added to file. When a split occurs in page
(n—1), i.e., after a full expansion, page n to page (n+k—3) are added in the
previous splits, and page (n+k—2) is added at this time.

By applying the concept similarly to extend backward incremental hashing,
it is found that when a split occurs in page 0 during the (d+ )th full expansion,
(k— 1) new pages are added to the end of the file; then, the data records in page
0 will be redistributed among page 0 and those (k — 1) new added pages according
to the value of c; When a split occurs in page i, where 1=i=<(k-2), the data
records in page i will be redistributed among those k pages, which are page i,
page (i—1), ..., page 0, page (n+k—2), page (n+k—3), ..., page (n+1i). Other-
wise, when (k—1)=<i=<(n— 1), the data records in page / will be redistributed into
page i, page ({—1), ..., page (i—k+1).

6.2 Performance

In this subsection, we study the performance of these extended incremental
hashing schemes by using a simulation technique and compare them with the
original forward and backward incremental hashing schemes, respectively.

Tables 5 and 6 show the simulation results of extended forward incremental
hashing and backward incremental hashing, respectively, and the results support
our claims: As k is increased, the growth rate is increased, resulting in a decrease
in storage utilization and the cost (in terms of the number of disk accesses) of
data retrieval and insertion operations. From both of the simulation results, we
observe that when k is 3 (or 4), both extended incremental hashing schemes can
have better utilization than can linear hashing while having a lower cost of data
retrieval and insertion operations than do all the other cases of k at the same time.

Figures 8-(a), (b), (c) show the relationship between the value of k and the
cost of inserting a data record, and successfully and unsuccessfully searching for
a data record, respectively, in extended forward hashing, where N= 1000, b =280,
w=40 and L=96. As k is increased, all of these costs are decreased. Moreover,
these costs in extended forward incremental hashing can even drop below the
costs of linear hashing at the cost of decreasing storage utilization. For example,
when k is larger than 14, the average insertion cost will be lower than that in
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Table 5. The simulation results in extended forward incremental hashing schemes.

Hashing Parameters L=0.8*b L=b L=1.2%b
Scheme | b w I ss us uti I ss us uti I 5§ us uti
forward | 20 10 |17 1.84 198 0.92 | 14 1.85 1.96 092 | 14 1.85 197 0.93
k3 20 10 |11 1.81 193 0.86 | 11 1.81 1.93 0.86 | 10 1.81 1.99  0.89
k4 20 10 |10 1.78 191 0.83 9.6 1.78 191 0.87 93 178 196 0.87
ks 20 10 8.6 1.76 1.88 0.80 79 1.76 1.88 0.80 9.0 176 1.88 0.85
ké 20 10 7.5 1.74 1.89 0.76 7.9 1.74 1.89  0.82 7.4 1.74 1.91 0.82
k7 20 10 7.1 172 183 0.76 7.5 172 1.83 0.76 6.9 1.72- 1.83 0.76
k8 20 10 7.5 1.69 190 0.74 6.3 1.69 190 0.74 7.3 169 190 0.82
k9 20 10 6.7 1.67 193 0.70 6.1 1.67 193 0.8 6.9 1.67 197 0.8
k10 20 10 5.2 1.62 193 0.68 6.0 1.62 193 0.78 59 162 196 0.78
linear 20 10 2.6 1.00 1.00 0.78 2.7 1.14 140 0.78 2.8 1.23 1.66 0.78
forward | 80 40 8.9 1.61 1.93 0.89 74 1.66 190 0.89 74 1.66 1.90 0.89
k3 80 40 74 150 190 0.86 6.4 1.61 1.93  0.78 5.8 1.61 1.93  0.80
k4 80 40 5.5 1.53 1.85 0.69 56 145 193 073 59 145 193 0.89
kS 80 40 52 135 183 0.65 5.5 1.35 1.83 0.83 48 147 1.80 0.78
ké 80 40 52 126 1.72 0.78 46 139 1700 0.71 4.1 1.52 1.84  0.69
k7 80 40 4.9 124 1.63 0.71 4.0 146 1.78 0.62 3.7 147 195 0.62
k8 80 40 4.2 1.33 1.67 0.59 3.6 143 1.90 0.58 3.5 1.34 198 0.56
k9 80 40 3.8 1.33 1.81  0.56 34 131 197 0.53 33 119 2.00 0.56
k10 80 40 35 132 1.8 049 3.2 119 191 0.53 3.1 1.11 191 0.83
k12 80 40 3.0 1.10 179 045 29 1.01 125 0.50 2.8 1.08 1.68 0.83
k14 80 40 28 1.00 1.00 0.46 28 1.05 1.13 053 26 113 1.61 0.73
k16 80 40 2.8 1.00 1.00 0.49 2.5 110 130 0.63 2. 1.12 1.50 0.67
linear 80 40 2.2 1.00 1.00 0.73 23 1.08 125 0.78 24 118 1.50 0.78
b: the size of a home page k: base system uti: storage utilization
w: the size of an overflow page ss: successful search I: insertion cost
L: load control us: unsuccessful search

Table 6. The simulation results in extended backward incremental hashing schemes.

Hashing Parameters L=0.8*b . L=b L=1.2*b
Scheme b w I ss us uti 1 58 us uti I B us uti
backward| 20 10 |12 1.78 1.84 0.93 10 1.80  2.00 0.95 8.7 1.64 2.00 0.93
k3 20 10 8.6 1.72 193 0.88 7.7 172 193 092 7.6 1.72 1.93  0.92
k4 20 10 7.4 1.67 1.89 0.84 6.4 1.67 1.89 0.89 6.5 1.67 1.89 0.89
ks 20 10 6.5 1.64 181 0.82 59 1.64 1.81 0.82 5.6 1.65 1.88 0.89
ké 20 10 6.0 160 1.8 0.77 5.4 1.60 1.88 0.84 5.2 1.60 1.88 0.84
k7 20 10 52 1.58 1.80 0.76 5.0 1.58 1.80 0.76 4.7 1.58 1.80 0.76
k8 20 10 49 154 1.84 0.72 46 155 184 0.73 4.0 1.55 1.86 0.81
k9 20 10 47 150 1.88 0.70 40 150 188 0.79 4.2 1.49  1.92 0.80
k10 20 10 4.4 146 1.87 0.67 3.9 146 190 0.76 3.9 1.46 1.88 0.76
linear 20 10 2.6 1.00 100 0.78 27 114 140 0.78 2.8 1.23 1.66 0.78
backward| 80 40 5.9 1.52 2.00 093 59 1.52 2.00 0.8 5.6 1.60 2.00 0.93
k3 80 40 4.1 134 1.82 0.83 43 132 180 0.86 4.2 130 1.70  0.93
k4 80 40 3.6 1.15 1.63 0.76 3.5 125 1.81 0.86 34 1.34  1.82 0.80
k5 80 40 3.2 1.10 1.50 0.78 3.0 1.21 1.69 0.73 3.2 1.20 1.60 0.78
k6 80 40 2.7 113 1.59 0.64 29 112 159 0.64 3.1 1.09 141 0.67
k7 80 40 2.6 1.06 1.38 0.58 2.8 1.06 122 0.61 2.8 1.08 1.40 0.58
k8 80 40 27 1.04 120 0.54 27 104 120 0.54 2.6 1.08 140 0.52
k9 80 40 2.6 1.02 1.18 0.48 25 1.02 1.27 047 2.4 1.07 140 0.64
k10 80 40 2.5 1.00 109 0.44 24  1.01 1.18 043 2.3 1.04 1.28 0.61
ki2 80 40 2.4 1.00 1.00 0.37 22 100 108 0.53 2.1 1.01 1.24  0.51
k14 80 40 22 1.00 100 0.46 2.0 1.00 1.00 0.46 1.9 1.00 1.00 0.46
k16 80 40 2.0 100 1.00 0.40 1.9 1.00 1.00 0.40 1.8 1.00 1.00 0.40
linear 80 40 22 1.00 1.00 0.73 2.3 1.08 125 0.78 2.4 1.18 1.50 0.78
b: the size of a home page k: base system uti: storage utilization
w: the size of an overflow page ss: successful search I: insertion cost

L: load control us: unsuccessful search
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Fig. 8. The relationship between the value of k in forward incremental hashing and: (a)
insertion cost; (b) successful search cost; () unsuccessful search cost.

linear hashing as shown in Fig. 8-(a). When k is larger than 8, the average suc-
cessful search cost will be lower than that in linear hashing as shown in Fig. 8-(b).
When k is larger than 16, the average unsuccessful search cost will be lower than
that in linear hashing as shown in Fig. 8-(¢).

Similarly, in extended backward incremental hashing, the average insertion
cost will be lower than that in linear hashing. When k is larger than 8 as shown
in Fig. 9-(a), the average successful search cost will be lower than that in linear
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Fig. 9. The relationship between the value of k in backward incremental hashing and: (a)
insertion cost; (b) successful search cost; (c) unsuccessful search cost.

hashing when k is larger than 5 as shown in Fig. 9-(b), and the average unsuccessful
search cost will be lower than that in linear hashing when k is larger than 5 as
shown in Fig. 9-(c). .

Therefore, if we care about fast retrieval (and the low insertion cost) more
than high storage utilization, we choose a k with a large value in extended in-
cremental hashing. On the other hand, if we care about high storage utilization
more than fast data retrieval (and low insertion cost), we choose a k with a small
value. Since high storage utilization and fast data retrieval (and low insertion
cost) are always a trade-off, the proposed extended incremental hashing provides
a flexible choice between these two requirements.
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7. CONCLUSION

In this paper, we have presented a new dynamic hashing approach, called
incremental hashing. Incremental hashing requires no index and always adds only
one more page after a full expansion; that is, the growth rate of a file per full
expansion is ((n+1)/n) when n is the number of pages of the current size of the
file. Two incremental hashing schemes have been presented, which are called
forward incremental hashing and backward incremental hashing. Forward in-
cremental hashing always splits forwards (i.e., redistribute data records in page
i and page i and page (i+ 1)) while backward incremental hashing always splits
backwards. By applying separators in both schemes to handle overflow pages,
any data record is guaranteed to be accessed in at most two disk accesses. From
our mathematical analysis and simulation study, both schemes have better storage
utilization than does linear hashing, where forward incremental can achieve 94%
storage utilization, and backward incremental hashing can achieve 95% storage
utilization, as compared to 78% storage utilization in linear hashing when the
keys are uniformly distributed. Moreover, both schemes can still achieve above
85% storage utilization while the storage utilization in linear hashing will drop
below 50% when the keys are not uniformly distributed.

Moreover, since high storage utilization and fast data retrieval are a trade-
off in all dynamic hashing schemes, we have extended both incremental hashing
schemes to have a growth rate of a file of ((n+k—1)/n) in order to find a com-
promise between better storage utilization and fast data retrieval. From our simula-
tion study, we can find that when k is 3 (or 4), both extended incremental hashing
schemes can have better utilization that can linear hashing while having a lower
cost of data retrieval and insertion operations than can all the other cases of k
at the same time. If we care about fast retrieval (and low insertion cost) more
than high storage utilization, we choose a k with a large value in extended in-
cremental hashing. On the other hand, if we care about high storage utilization
more than fast data retrieval (and low insertion cost), we choose a k with a small
value. Therefore, the proposed extended incremental hashlng provides a flexible
choice between these two requirements.

Linear hashing with partial expansions [8] and the use of different split sequences
are extensions to Litwin’s basic algorithm of linear hashing to make uniform the
load distribution [13], which, in turn, improves performance in storage utilization
or insertion/retrieval operations. Since our incremental hashing is a new approach
to dynamic hashing without an index, i.e., it has the same position as Litwin’s linear
hashing among its variants, extending incremental hashing with parital expansions
(or with the use of different split sequences) is a possible future research direction.
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